
Supplementary Note 
 
Barcode collisions. In designing our 4bp physical barcodes, we considered the 
possibility that distinct parental molecules could accidentally receive the same 
exogenous UID (generally known as the “birthday problem”1). Such “barcode collisions” 
can only happen when different DNA molecules share identical start/end coordinates. 
We previously observed redundant start/end coordinates in <50% of cfDNA and <10% of 
acoustically shorn gDNA molecules in prior work (Supplementary Fig. 4a in Newman et 
al., 20142). Therefore, the majority of recovered molecules were expected to be unique 
and unaffected by barcode collisions. Moreover, given 256 possible physical UIDs (i.e., 
44 combinations), the probability of assigning the same UID to two distinct molecules 
was determined to be only 0.39% (pbirthday function in R). Therefore, we predicted that 
our barcode strategy would have sufficient complexity to avoid performance degradation 
due to barcode collisions. 
 
To validate our design assumptions, we performed two dedicated analyses. First, using 
cfDNA samples spanning a range of clinically relevant haploid genome equivalents 
(hGEs), we estimated the fraction of barcoded molecules that would likely be lost due to 
the “birthday problem”. We determined (i) the distribution of distinct molecules with 
identical start/end coordinates (Supplementary Fig. 2a), and (ii) the number of affected 
molecules for each bin size n. Specifically, given k = 256 possible physical UIDs and a 
bin size of n molecules with identical start/end coordinates, we calculated the number of 
expected barcode collisions with the following formula, which is commonly used to 
determine the number of expected collisions in a hash table3: 

• 𝛦 𝑏𝑎𝑟𝑐𝑜𝑑𝑒  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 = 𝑛 − 𝑘 + 𝑘 !!!
!

!
 

While the resulting quantity Cn denotes the number of expected collisions within bin size 
n, it does not capture the total number of affected barcodes, which is at most twice this 
quantity. Therefore, given N distinct bin sizes, we conservatively calculated the total 
number of molecules affected by barcode collisions: 

• 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑  𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 = 2𝐶!!
!!!  

Based on this approach, we estimated a minor loss of between 0.15% and 0.56% of all 
recovered molecules (Supplementary Fig. 2a–c).  
 
To confirm these estimates, we performed a second analysis to directly measure the 
rate of such collisions in our own data, by relying on known germline sequence variants 
within the ligated cfDNA inserts. Specifically, we evaluated UID families with identical 
start/end coordinates and capturing a cfDNA fragment harboring a previously identified 
germline SNP known to be heterozygous (i.e., A/B alleles). By focusing on UID families 
harboring at least one member supporting the alternate (non-reference) allele (i.e., allele 
B), we were able to determine which UID families had support for both maternal (B) and 
paternal (A) alleles. Such families, we hypothesized, were more likely to have occurred 
due to barcode collisions than due to sequencing errors. In support of this hypothesis, 
UID families with an erroneous reference allele (A) were >13-fold more common than 
those with another discordant non-reference allele (not A, not B). Importantly, this 
approach revealed losses of between 0.1% and 0.44% of recovered molecules 
(Supplementary Fig. 2d), similar to our previous estimates on the same cfDNA samples 
(Supplementary Fig. 2c).  
 



Based on these data, the birthday problem is unlikely to significantly impact our short 
barcodes, because (1) the loss of 0.1-0.5% of molecules to barcode collisions is minor 
for cfDNA input masses that are clinically obtainable, and because (2) given the 
generally low fractions of ctDNA observed in patient samples, such collisions are likely to 
mostly involve wild-type molecules when they occur. 
 
Advantages of short barcodes. Barcodes can either be (1) made enzymatically by 
polymerase extension over a degenerate synthetic template (as in Kennedy et al. 
20144), or (2) synthesized in a single unit with the adapter sequences. The first strategy 
relies on the diversity of synthesis of degenerate N-mers, which may contain biases5, 
and the processivity of polymerases, which can vary as a function of such templates. 
The second strategy offers the advantage of defined composition with desired diversity 
through the balanced mixing of individually synthesized oligos, but becomes increasingly 
expensive with greater barcode complexity. We initially tested approach #1 but found 
poor efficiency of cfDNA input recovery. This led us to develop option #2, and these 
adapters with commercially synthesized barcodes yielded superior hGE recovery, 
potentially due to improved ligation efficiency due to intact adapter ends. Other 
considerations included maximizing informative sequencing space and minimizing the 
alteration of the adapter sequences to preserve proper annealing.  After analyzing the 
expected number of input molecules with identical start/end coordinates, we found that 
4-base barcodes can generate sufficient diversity to differentiate the vast majority of 
molecules for clinically relevant input amounts (see Barcode ambiguity above). Thus, 
short barcodes were used in order to maximize sequencing space and molecule 
recovery while minimizing adapter cost. 
 
Assay efficiency. To determine the efficiency of the CAPP-Seq library protocol, 
especially as it relates to error correction and duplex strand recovery, we performed a 
dedicated experiment, shown schematically in Supplementary Fig. 3a. Starting with 
32ng of input cfDNA from a healthy donor (=10,560 haploid genome equivalents, or 
hGEs, assuming 330 hGEs / ng), we performed CAPP-Seq library prep to completion. 
We then split the post-capture library in two, and sequenced each of these on a separate 
flow-cell lane (i.e., Lane 1 and 2 in Supplementary Fig. 3a). Using shared genomic 
start/end positions and UIDs, we were able to determine which original molecules were 
sequenced on both lanes and which were not. To estimate the total number of post-
capture molecules, we then used a well-established “mark and recapture” approach from 
ecology, termed the Lincoln-Petersen method6. If L1 denotes number of distinct (i.e., 
non-duplicated) molecules recovered in lane 1, L2 denotes the number of distinct 
molecules recovered in lane 2, and L1,2 denotes the number of distinct molecules 
recovered in both lanes, then the number of post-capture molecules M can be estimated 
with the following formula6: 

• 𝑀 = !!!!
!!,!

 

The mark and recapture method estimates suggested that ~50-60% of total hGEs that 
entered the library preparation process made it through post-capture PCR 
(Supplementary Fig. 3b, left). This estimate remained stable even when subsampling 
down by an order of magnitude (Supplementary Fig. 3b, left). In addition, our result 
was similar to a prior estimate of CAPP-Seq library efficiency based on mass input, 
number of PCR cycles, and PCR efficiency (Supplementary Fig. 4b in Newman et al. 
20142). 
 



We then examined the efficiency of recovering duplex molecules. Regardless of overall 
sequencing amounts, we estimated a post-capture recovery rate of ~12% 
(Supplementary Fig. 3b, right). This result agreed with expectations of seeing 
independent single-stranded molecules using sampling models (described below). In 
fact, post-sequencing duplex recovery rates were also highly predictable 
(Supplementary Fig. 4d), suggesting a lack of significant biases in duplex capture.  
 
Duplex recovery. Duplex sequencing provides exceptional error suppression, but is 
limited by inefficient recovery of double-stranded (DS) molecules4. Since all input 
molecules are denatured into single-stranded (SS) molecules prior to PCR amplification 
(followed by hybrid capture and additional PCR for CAPP-Seq), we hypothesized that 
the duplex recovery rates observed in our data should be consistent with statistical 
sampling models. If not, this would suggest a potential bias in our assay. In order to test 
this hypothesis, we used the binomial distribution, which determines the probability of 
drawing a success (i.e., duplex molecule) with replacement. Although no replacement 
occurs in actual sequencing data, the probability of finding a matching pair of SS 
molecules drawn with replacement can be viewed as an approximation to finding a 
duplex molecule. We therefore estimated the expected number of pairs (i.e., duplex 
molecules) within a pool of m single-stranded hGEs drawn from n distinct input hGEs, 
using the following formula: 

• 𝛦 𝑑𝑢𝑝𝑙𝑒𝑥  𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 = 𝑛(1 − 𝛲 𝐵𝑖𝑛𝑜𝑚 𝑚, !
!
= 𝑖!

!!! ) 

Here, the number of distinct input molecules n is multiplied by the probability of 
observing a given molecule ≥2 times, yielding an expectation for the number of 
recovered duplex molecules. To evaluate this model, we predicted duplex recovery for 
201 cfDNA samples sequenced with appropriate barcodes (i.e., insert UIDs; 
Supplementary Table 2). For each sample, n was set to the number of input hGEs 
(input mass in ng x 330 hGEs / ng) and m was set to the median on-target depth 
following de-duplication. Importantly, knowledge of duplex support was deliberately 
excluded from the latter, such that m was only based on single-stranded coverage. We 
observed a significant linear relationship between predicted and observed duplex-
supported molecules (R2 = 0.79, P<0.0001), with a slope of 1.09 and an intercept of 13 
(Supplementary Fig. 4d). Thus, probabilistic modeling can accurately predict duplex 
recovery in our data, suggesting that strand loss is primarily related to subsampling, not 
to specific technical limitations of our adapter design or library protocol. 
 
Over-sequencing versus barcode recovery. To explore how sequencing depth relates 
to the recovery of single-stranded consensus sequence (SSCS) and double-stranded 
consensus sequence (DCS) molecule recovery for a range of input masses, we used a 
metric that relates the number of raw on-target sequence reads to DNA input mass. 
Specifically, we calculated the median panel coverage before duplication removal and 
divided this number by the number of input hGEs. The resulting quantity, termed “Fold 
over-sequencing relative to input hGEs,” provided a convenient metric that is 
independent of a specific input mass or sequencing amount. We then applied this metric 
to assess both the number of reads required to build a SSCS molecule (Supplementary 
Fig. 4a) and the number of SSCS molecules required to build a DCS molecule 
(Supplementary Fig. 4b). SSCS yields were highly correlated with level of over-
sequencing (R2 = 0.73). Importantly, this relation remained significantly concordant 
(P<0.0001) when considering our most common cfDNA input mass (32 ng) separately 



from smaller input masses (<32ng) (Supplementary Fig. 4a). DCS yields were 
reasonably predictable by a power function (Supplementary Fig. 4b).  
 
To compare our DCS yields to the literature, we performed an analysis originally 
described in Kennedy et al. (2014)4 for determining the optimal amount of over-
sequencing for duplex recovery. Specifically, we examined the total number of on-target 
reads required to build a single DCS molecule (“DCS efficiency”) as a function of peak 
family size. The latter is defined as the mode of all SSCS family sizes (i.e., the number 
of reads per SSCS family) (e.g., Fig 5a in Kennedy et al.4). Using a highly over-
sequenced 32 ng input sample of cfDNA, we performed in silico down-sampling from 
~5000 down to ~670 hGEs, and then computed DCS efficiency and peak family sizes at 
defined intervals. We found an optimal DCS efficiency at peak sizes of between 1 and 2 
(Supplementary Fig. 4c). This maximal DCS efficiency was achieved at mean SSCS 
family sizes of ~2 to 2.7. Notably, we observed a peak DCS efficiency that was ~4.5-fold 
higher than that reported by Kennedy et al. and our optimal peak size was lower, likely 
owing to fundamental molecular biology differences in our approaches. 
 
Background errors in independent cfDNA sequence data. We observed a high ratio 
of G>T to C>A changes in cfDNA sequence data with respect to the plus strand of the 
reference genome (Fig. 2b). Based on experimental evidence, we hypothesized that this 
imbalance could be explained by (i) oxidative damage occurring during target 
enrichment and (ii) capture baits that exclusively target the plus strand (Supplementary 
Fig. 6d). We also hypothesized that this damage was due to 8-oxoG, however, unlike 
oxidized oil-mediated 8-oxoG7 and sonication-induced 8-oxoG8, the specific mechanism 
for G>T/C>A damage in our data remains unclear. To examine the reproducibility of our 
capture-based model using independent sequencing data, we analyzed two studies that 
applied hybrid capture methods to cfDNA and that did not perform sonication.  
 
The first study, by De Mattos-Arruda and colleagues, used the same capture reagent as 
CAPP-Seq (NimbleGen SeqCap), but applied a different library preparation protocol9. In 
a representative subset of their data (4 plasma samples and 1 cerebrospinal fluid (CSF) 
sample), we observed a significantly higher ratio of G>T to C>A errors (Supplementary 
Fig. 6e, left), consistent with our model. In another set of samples, the authors applied 
whole exome profiling to cfDNA samples using the Nextera Rapid Capture Exome kit 
(37Mb) (Illumina). Examining a randomly chosen subset of 2 patients, we also observed 
an imbalance in G>T to C>A errors, however the ratio of errors was reversed 
(Supplementary Fig. 6e, right). This striking reversal in the polarity of the G>T versus 
C>A error bias corresponds to the strand polarity of the capture reagents: NimbleGen’s 
SeqCap targets the (+) strand, while Illumina’s Nextera Exome Kit targets the (–) strand 
(A. Aravanis, Illumina, personal communication).  
 
The second study, by Butler and colleagues, applied the Agilent SureSelect Human All 
Exon v4 UTR reagent to whole-exome profiling of cfDNA10. Interestingly, these data also 
showed a higher ratio of C>A to G>T errors (Supplementary Fig. 6e, right), again 
suggesting that the (–) strand was being captured by Agilent SureSelect baits, which we 
later confirmed11. 
 
Collectively, these data strongly support our hybrid-capture-based model of oxidative 
damage, highlighting the need for methods, such as background polishing, to address 
the corresponding sequence artifacts. 
 



Separately, we tested whether independent cfDNA datasets also exhibit stereotypical 
background errors across multiple genomic locations. By analyzing 5 cfDNA samples 
from De Mattos-Arruda and colleagues9, we found widespread recurrent errors for nearly 
all base substitution types (Supplementary Fig. 5a, top). Moreover, these error profiles 
were comparable between cfDNA obtained from plasma and from CSF (Supplementary 
Fig. 5a, top). Striking similarities in background patterns were also observed when these 
independent data were intersected with our NSCLC tumor genotyping panel 
(Supplementary Fig. 5a, bottom). Therefore, recurrent background errors in capture-
based cfDNA sequence data are likely a general phenomenon – they can be found 
independently of cfDNA origin, oligonucleotide synthesis batch, and library protocol.  
 
Additional details related to NSCLC selector design. CAPP-Seq selectors are 
generally designed to cover as many patients and mutations per patient as possible with 
minimal genomic space (Fig. 1a). To prioritize inclusion of genomic regions, we used an 
approach that leverages a “recurrence index” (RI) metric, defined as the percent of 
patients (in a given cohort) that harbor mutations (e.g., SNVs/indels) in a given kilobase 
of genomic sequence. A similar strategy was used previously2, with exons as the primary 
genomic unit and without considering indels.  
 
Mutation annotation format (MAF) files were obtained from TCGA whole exome 
sequencing studies of 606 lung adenocarcinoma12 (LUAD) tumors (v2.4) and 178 lung 
squamous cell carcinoma13 (SCC) tumors (v2.3). MAF files were pre-filtered using UCSC 
genome browser feature tracks to eliminate variants in (i) repeat-rich genomic regions 
(RepeatMasker, simple repeats, microsatellites, interrupted repeats and segmental 
duplications, all downloaded October 19, 2013) and (ii) intervals with low mapping rates 
or low k-mer uniqueness (wgEncodeCrgMapability 100mer track, 
wgEncodeDukeMapability 35mer track).  
 
Using filtered MAF data as input, we restricted our search space to known lesions 
flanked by a user-defined buffer (by default, 1bp), with a minimum tile size of 100bp. 
Since only a subset of an exon may contain known somatic mutations, this approach 
saves sequencing space. Selected regions were subsequently ranked by decreasing RI, 
and those in the top 10 percent of both RI and the number of patients per region were 
included. This process was then iteratively repeated using relaxed percentile filters (e.g., 
to permit the top 1/3 regions) and regions that maximally increased the median number 
of mutations per patient were added. Selector growth terminated when the desired size 
was reached (175 kb to yield 8 mutations in the average NSCLC patient, 
Supplementary Table 1), or when all genomic regions satisfying these filters were 
exhausted.  
 
Additional details related to selector-wide genotyping. A schematic of the SNV 
genotyping approach is provided in Supplementary Fig. 10b. Given that base 
substitution classes have disparate background distributions (Figs. 2b, 3a), we sought to 
control the false positive rate (FPR) for each class separately. Toward that end, we 
modeled the cumulative distribution of background errors for each base substitution 
class, excluding candidate variants with >5 supporting reads to minimize the 
confounding influence of true variants. We found that power series and exponential 
functions fit the observed data well (Supplementary Fig. 10a), and for each class, we 
selected the function that best captured the data using linear regression in log-linear 
space. To increase sensitivity, we modeled candidate variants with and without strand 
support (plus and minus oriented reads) separately, for a total of 24 base substitution 



models per input sample (2 × 12 substitution classes). Such models readily illustrate the 
impact of background polishing on substitution-specific error rates (Supplementary Fig. 
10a). Each of the 24 functions was independently solved to identify the minimum number 
of supporting reads t needed to yield y false positive calls (i.e., cumulative errors). To 
minimize the FPR, we used y = 0 in this work (Supplementary Fig. 10a).  
 
To identity SNVs, base substitution thresholds were further adjusted for each candidate 
variant based on considerations of local error rate e and position-specific sequencing 
depth d (Supplementary Fig. 10b). Since discrete genomic intervals often exhibit 
differences in background error rates (e.g., misalignment due to repeat content), we 
explicitly analyzed the error rate of each gene e, defined as the number of positions 
harboring non-reference bases divided by the number of sequenced bases. If a given 
gene g was within the top 25 percent of selector-wide gene-level error rates, then the 
base substitution threshold t for each candidate variant in g was up-weighted: 

• t ← t × w, where w = min{q2, 5} and q = e divided by the 75th percentile of the 
error rates of all evaluable genes 

Subsequently, if the sequencing depth d of a given candidate variant was less than the 
median selector-wide sequencing depth dmed, t was down-weighted: 

• t ← t/w*, where w* = ln(dmed/d) 
Variants that satisfied t were saved as candidate SNVs.  
 
Next, we applied a heuristic filter to detect and remove remaining background alleles 
within the list of candidate SNVs L (provided |L| was ≥4) (Supplementary Fig. 10b). 
Upon ranking L by increasing AFs, an iterator i was used to traverse the list. For each i, 
L was split into two parts, SNVs with an AF below Li and SNVs with an AF ≥Li. A two-
sided F-test was employed to statistically evaluate the difference in variance between 
the two lists, yielding a p-value. The SNV list L was then traversed in order of increasing 
AFs to identify the index i* of the first p-value corresponding to a local minimum. Such a 
minimum, if detected, indicates a potential inflection point between noise (lower tail) and 
signal (higher AFs). If the p-value corresponding to i* was below 0.05 and if Li was at 
least 10% greater than Li–1, we subsequently evaluated the difference between Li and 
the distribution of potential background events, L1 to Li–1, using a one-sided z test 
(justified given normality observed for SNV AFs). If the corresponding p-value was 
<0.01, the candidate SNV list was split and the lower tail (L1 to Li–1) was removed. In 
empirical analyses, this procedure was found to improve specificity (data not shown), 
suggesting it can effectively detect and remove residual background variants.  
 
For the analyses in this work, we required a minimum position-specific depth of 20 hGEs 
for tumors and 1,000 hGEs for cfDNA. To incorporate paired germline samples, we 
eliminated candidate variant calls if present in paired germline with ≥1% AF, ≥4 
supporting reads, and in a position with ≥10x total depth. 
 
To evaluate the technical performance of our approach, we created an in silico dilution 
series in which a control cfDNA sample with median depth of 4,046 hGEs was 
manipulated to introduce 100 uniformly distributed homozygous SNVs (Supplementary 
Table 2). Each synthetic numerator was then added to the original cfDNA sample in 5% 
and 0.5% proportions. To emulate the median length of cfDNA, thereby maintaining its 
distribution in sequencing data, genomic regions were randomly spiked in 170bp 
contiguous segments. Robust performance was observed (Supplementary Fig. 10c). 
Separately, in comparison to the approach we previously employed for tumor 
genotyping2, we found that the adaptive method exhibited higher sensitivity and 



specificity for somatic genotyping of tumors, whose variant calls were tested within a 
ctDNA monitoring framework (same analysis as in Fig. 5b; data not shown).  
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